Pi visualization

edited March 2018 in Share Your Work

Hi everyone!

I was watching a video of Daniel Shiffman about visualizing the digits of Pi the other day in wich he refers to a Washington post article that shows example of some representation.

I thought I would give it a try and recreate one of them.

This is the result I got :

It is done by connecting a line between each digit and the next one. Tell me if you want to see the code, I need to refactor it a bit =)

The links I was speaking about : The Daniel Shiffman video : www.youtube.com/watch?v=WEd_UIKG-uc The Washington post article : www.washingtonpost.com/news/wonk/wp/2015/03/14/10-stunning-images-show-the-beauty-hidden-in-pi/?utm_term=.4cefc01ce593

Tagged:

Comments

  • @jb4x --beautiful work.

    Yes, I would love to see the code!

  • Hey, thanks for the comment !

    Here the code :

    final float diameter = 700; //the diameter of the circle
    color[] digitColor = new color[10]; //The color of each digit
    float[] currentDigitAngle = new float[10]; //Keep track of the last angle used for each digit (each time a line goes to the digit, the line is offset)
    float[] digitAngleStep = new float[10]; //Store the step to add every time the line goes to a digit
    int pos; //Keep track of the current digits beeing displayed if the draw function is used
    int[] digit; //All the digit of PI
    
    void setup() {
      size(1920, 1080); 
      background(0);
      translate(width/2, height/2);
      noFill();
      stroke(255);
      textAlign(CENTER, CENTER);
      strokeWeight(5);
    
      //Variables
      String dataString; //all the PI number as string
    
      int[] digitCount = new int[10]; //The amount of each deach from 0 to 9
      float[] digitWeight = new float[10]; //The proportion of each digit from 0 to 9
      final float angleGap = 0.03; //The gap between each arc
      float[] digitAngleSize = new float[10]; //The size of each digit arc 
      float currentAngle; //Use to keep track of the last arc drawn on screen in order the draw the next one after
      PFont myFont; //The font used for the text
    
    
      //Initialize variables
      myFont = createFont("data/Comfortaa-Regular.ttf", 40);
      textFont(myFont);
      textSize(diameter / 10);
      text("π", -5, -10);
      textSize(diameter / 30);
      pos = 0;
    
      digitColor[0] = color(236, 166, 15);
      digitColor[1] = color(232, 125, 27);
      digitColor[2] = color(227, 45, 42);
      digitColor[3] = color(210, 0, 64);
      digitColor[4] = color(168, 11, 95);
      digitColor[5] = color(135, 46, 134);
      digitColor[6] = color(91, 77, 163);
      digitColor[7] = color(46, 116, 157);
      digitColor[8] = color(30, 154, 119);
      digitColor[9] = color(91, 176, 90);
    
    
      //Load data from string
      dataString = loadStrings("Data/PI_10000_digits.txt")[0];
    
      //Transform data to integer and get count
      digit = new int[dataString.length()];
    
      for (int i = 0; i < dataString.length(); i++) {
        digit[i] = Character.getNumericValue(dataString.charAt(i));
        digitCount[digit[i]]++;
      }
    
    
      //Find weight and angle
      for (int i = 0; i < 10; i++) {
        digitWeight[i] = (float)digitCount[i] / digit.length;
        digitAngleSize[i] = digitWeight[i] * (TWO_PI - (10 * angleGap));
        if (digitCount[i] == 1) {
          digitAngleStep[i] = 0;
        } else {
          digitAngleStep[i] = digitAngleSize[i] / (digitCount[i] - 1);
        }
      }
    
    
      //Draw arcs and text
      currentAngle = (3 * PI / 2) - (digitAngleSize[0] / 2);
      for (int i = 0; i < 10; i++) {
        //Arcs
        stroke(red(digitColor[i]), green(digitColor[i]), blue(digitColor[i]));
        noFill();
        arc(0, 0, diameter, diameter, currentAngle, currentAngle+digitAngleSize[i]);
        currentDigitAngle[i] = currentAngle;
    
        //Text
        fill(red(digitColor[i]), green(digitColor[i]), blue(digitColor[i]));
        text(i, 1.1 * (diameter / 2) * cos((2*currentAngle+digitAngleSize[i])/2), 1.1 * (diameter/2) * sin((2*currentAngle+digitAngleSize[i])/2));
    
        currentAngle = currentAngle + digitAngleSize[i] + angleGap;
      }
    
    
      //*******
      //COMMENT THOSE LINES IF YOU USE THE DRAW FUNCTION
      //*******
    
      //Draw bezier curves
      for (int i = 0; i < digit.length - 1; i++) {
        drawBezier(currentDigitAngle[digit[i]], currentDigitAngle[digit[i+1]], digitColor[digit[i]]);
        currentDigitAngle[digit[i]] += digitAngleStep[digit[i]];
      }
    
      //*******
    }
    
    
    void draw() {
      //*******
      //UNCOMMENT THOSE LINES TO SEE THE DRAWING PROCESS
      //*******
    
      //translate(width/2, height/2);
    
      //for (int i = 0; i < 10; i++) {
      //  if (pos < digit.length - 1) {
      //    drawBezier(currentDigitAngle[digit[pos]], currentDigitAngle[digit[pos+1]], digitColor[digit[pos]]);
      //    currentDigitAngle[digit[pos]] += digitAngleStep[digit[pos]];
      //    pos++;
      //  }
      //}
    }
    
    
    
    // Function called to draw the bezier curves between two points
    // angle1 is the angle of the first point
    // angle2 is the angle od the second point
    // Stroke color is the color used for the line
    void drawBezier(float angle1, float angle2, color strokeColor) {
      float x1, y1, x2, y2, r, controlAngle1, controlAngle2, controlR;
    
      r = (diameter / 2) - 6;
    
      x1 = r * cos(angle1);
      y1 = r * sin(angle1);
      x2 = r * cos(angle2);
      y2 = r * sin(angle2);
    
      noFill();
      stroke(red(strokeColor), green(strokeColor), blue(strokeColor), 5);
      strokeWeight(2);
    
      //Different method is used in order to avoid line in the middle section
      if (angleDiff(x1, y1, x2, y2, 0, 0) < 0.3) {
        controlAngle1 = getAngle(x1, y1, 0, 0) + 0.5;
        controlAngle2 = getAngle(x2, y2, 0, 0) - 0.5;
        controlR = 0.9 * dist(x1, y1, 0, 0);
        bezier(x1, y1, x1 + controlR * cos(controlAngle1), y1 + controlR * sin(controlAngle1), x2 + controlR * cos(controlAngle2), y2 + controlR * sin(controlAngle2), x2, y2);
      } else {
        bezier(x1, y1, x1/2, y1/2, x2/2, y2/2, x2, y2);
      }
    }
    
    
    
    
    
    //Get angle from point 1 to point 2
    float getAngle(float x1, float y1, float x2, float y2) {
      float angle;
    
      if (x2==x1) {
        if (y1>y2) {
          return HALF_PI;
        } else {
          return -HALF_PI;
        }
      }
    
      angle = atan((y2-y1)/(x2-x1));
      if (x1 > x2) {
        return angle + PI;
      } else {
        return angle;
      }
    }
    
    
    //Angle difference between pt1-2 and p1-3
    float angleDiff(float x1, float y1, float x2, float y2, float x3, float y3) {
      float a1, a2, aDiff;
      a1 = getAngle(x1, y1, x2, y2);
      a2 = getAngle(x1, y1, x3, y3);
    
      aDiff = abs(a1 - a2);
      if (aDiff > PI) {
        if (a1>a2) {
          while (a1>a2) {
            a1 = a1 - TWO_PI;
          }
        } else {
          while (a1<a2) {
            a1 = a1 + TWO_PI;
          }
        }
      }
      aDiff = abs(a1 - a2);
    
      return aDiff;
    }
    
  • can you post the data file as well?

  • Sure, just forgot about it. There you go.

  • Probably something like this without the leading 8 chars?

    https://www.rsok.com/~jrm/pi10000.txt

  • 3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012858361603563707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104752162056966024058038150193511253382430035587640247496473263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955321165344987202755960236480665499119881834797753566369807426542527862551818417574672890977772793800081647060016145249192173217214772350141441973568548161361157352552133475741849468438523323907394143334547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865832645995813390478027590099465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203496252451749399651431429809190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680845987273644695848653836736222626099124608051243884390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158456028506016842739452267467678895252138522549954666727823986456596116354886230577456498035593634568174324112515076069479451096596094025228879710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549781893129784821682998948722658804857564014270477555132379641451523746234364542858444795265867821051141354735739523113427166102135969536231442952484937187110145765403590279934403742007310578539062198387447808478489683321445713868751943506430218453191048481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675142691239748940907186494231961567945208095146550225231603881930142093762137855956638937787083039069792077346722182562599661501421503068038447734549202605414665925201497442850732518666002132434088190710486331734649651453905796268561005508106658796998163574736384052571459102897064140110971206280439039759515677157700420337869936007230558763176359421873125147120532928191826186125867321579198414848829164470609575270695722091756711672291098169091528017350671274858322287183520935396572512108357915136988209144421006751033467110314126711136990865851639831501970165151168517143765761835155650884909989859982387345528331635507647918535893226185489632132933089857064204675259070915481416549859461637180270981994309924488957571282890592323326097299712084433573265489382391193259746366730583604142813883032038249037589852437441702913276561809377344403070746921120191302033038019762110110044929321516084244485963766983895228684783123552658213144957685726243344189303968642624341077322697802807318915441101044682325271620105265227211166039666557309254711055785376346682065310989652691862056476931257058635662018558100729360659876486117910453348850346113657686753249441668039626579787718556084552965412665408530614344431858676975145661406800700237877659134401712749470420562230538994561314071127000407854733269939081454664645880797270826683063432858785698305235808933065757406795457163775254202114955761581400250126228594130216471550979259230990796547376125517656751357517829666454779174501129961489030463994713296210734043751895735961458901938971311179042978285647503203198691514028708085990480109412147221317947647772622414254854540332157185306142288137585043063321751829798662237172159160771669254748738986654949450114654062843366393790039769265672146385306736096571209180763832716641627488880078692560290228472104031721186082041900042296617119637792133757511495950156604963186294726547364252308177036751590673502350728354056704038674351362222477158915049530984448933309634087807693259939780541934144737744184263129860809988868741326047215695162396586457302163159819319516735381297416772947867242292465436680098067692823828068996400482435403701416314965897940924323789690706977942236250822168895738379862300159377647165122893578601588161755782973523344604281512627203734314653197777416031990665541876397929334419521541341899485444734567383162499341913181480927777103863877343177207545654532207770921201905166096280490926360197598828161332316663652861932668633606273567630354477628035045077723554710585954870279081435624014517180624643626794561275318134078330336254232783944975382437205835311477119926063813346776879695970309833913077109870408591337464144282277263465947047458784778720192771528073176790770715721344473060570073349243693113835049316312840425121925651798069411352801314701304781643788518529092854520116583934196562134914341595625865865570552690496520985803385072242648293972858478316305777756068887644624824685792603953527734803048029005876075825104747091643961362676044925627420420832085661190625454337213153595845068772460290161876679524061634252257719542916299193064553779914037340432875262888963995879475729174642635745525407909145135711136941091193932519107602082520261879853188770584297259167781314969900901921169717372784768472686084900337702424291651300500516832336435038951702989392233451722013812806965011784408745196012122859937162313017114448464090389064495444006198690754851602632750529834918740786680881833851022833450850486082503930213321971551843063545500766828294930413776552793975175461395398468339363830474611996653858153842056853386218672523340283087112328278921250771262946322956398989893582116745627010218356462201349671518819097303811980049734072396103685406643193950979019069963955245300545058068550195673022921913933918568034490398205955100226353536192041994745538593810234395544959778377902374216172711172364343543947822181852862408514006660443325888569867054315470696574745855033232334210730154594051655379068662733379958511562578432298827372319898757141595781119635833005940873068121602876496286744604774649159950549737425626901049037781986835938146574126804925648798556145372347867330390468838343634655379498641927056387293174872332083760112302991136793862708943879936201629515413371424892830722012690147546684765357616477379467520049075715552781965362132392640616013635815590742202020318727760527721900556148425551879253034351398442532234157623361064250639049750086562710953591946589751413103482276930624743536325691607815478181152843667957061108615331504452127473924544945423682886061340841486377670096120715124914043027253860764823634143346235189757664521641376796903149501910857598442391986291642193994907236234646844117394032659184044378051333894525742399508296591228508555821572503107125701266830240292952522011872676756220415420516184163484756516999811614101002996078386909291603028840026910414079288621507842451670908700069928212066041837180653556725253256753286129104248776182582976515795984703562226293486003415872298053498965022629174878820273420922224533985626476691490556284250391275771028402799806636582548892648802545661017296702664076559042909945681506526530537182941270336931378517860904070866711496558343434769338578171138645587367812301458768712660348913909562009939361031029161615288138437909904231747336394804575931493140529763475748119356709110137751721008031559024853090669203767192203322909433467685142214477379393751703443661991040337511173547191855046449026365512816228824462575916333039107225383742182140883508657391771509682887478265699599574490661758344137522397096834080053559849175417381883999446974867626551658276584835884531427756879002909517028352971634456212964043523117600665101241200659755851276178583829204197484423608007193045761893234922927965019875187212726750798125547095890455635792122103334669749923563025494780249011419521238281530911407907386025152274299581807247162591668545133312394804947079119153267343028244186041426363954800044800267049624820179289647669758318327131425170296923488962766844032326092752496035799646925650493681836090032380929345958897069536534940603402166544375589004563288225054525564056448246515187547119621844396582533754388569094113031509526179378002974120766514793942590298969594699556576121865619673378623625612521632086286922210327488921865436480229678070576561514463204692790682120738837781423356282360896320806822246801224826117718589638140918390367367222088832151375560037279839400415297002878307667094447456013455641725437090697939612257142989467154357846878861444581231459357198492252847160504922124247014121478057345510500801908699603302763478708108175450119307141223390866393833952942578690507643100638351983438934159613185434754649556978103829309716465143840700707360411237359984345225161050702705623526601276484830840761183013052793205427462865403603674532865105706587488225698157936789766974220575059683440869735020141020672358502007245225632651341055924019027421624843914035998953539459094407046912091409387001264560016237428802109276457931065792295524988727584610126483699989225695968815920560010165525637567

  • Looks great, thanks!

  • Amazing. Thanks for sharing.

Sign In or Register to comment.