this are the first five lines copied and pasted from the txt (I don't know if it has changed the format)
KeyNo
Authors
Year
Pages
Journal
Journal2
Title
Abstract
Keywords
Times Cited
Cited Reference Count:
cit
1
Mattson, M P, Haddon, R. C., Rao, A. M.
2000
175-182
J. Mol. Neurosci.
J Mol Neurosci
Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth
Carbon nanotubes are strong, flexible, conduct electrical current, and can be functionalized with different molecules, properties that may be useful in basic and applied neuroscience research. We report the first application of carbon nanotube technology to neuroscience research. Methods were developed for growing embryonic rat-brain neurons on multiwalled carbon nanotubes. On unmodified nanotubes, neurons extend only one or two neurites, which exhibit very few branches. In contrast, neurons grown on nanotubes coated with the bioactive molecule 4-hydroxynonenal elaborate multiple neurites, which exhibit extensive branching. These findings establish the feasability of using nanotubes as substrates for nerve cell growth and as probes of neuronal function at the nanometer scale.
brain, growth cones, hippocampus, hydroxynonenal, nanotechnology, cone guidance, lipid-peroxidation, calcium regulation, chemistry, proteins, product
279
27
Hamon MA, 1999, ADV MATER, V11, P834, DOI 10.1002/(SICI)1521-4095(199907)11:10<834::AID-ADMA834>3.0.CO
Song HJ, 1999, CURR OPIN NEUROBIOL, V9, P355, DOI 10.1016/S0959-4388(99)80052-X
Andrews R, 1999, CHEM PHYS LETT, V303, P467, DOI 10.1016/S0009-2614(99)00282-1
Mattson MP, 1999, J NEUROSCI RES, V56, P8, DOI 10.1002/(SICI)1097-4547(19990401)56:1<8::AID-JNR2>3.3.CO
2-lug
Fan SS, 1999, SCIENCE, V283, P512, DOI 10.1126/science.283.5401.512
Ren ZF, 1998, SCIENCE, V282, P1105, DOI 10.1126/science.282.5391.1105
Chen J, 1998, SCIENCE, V282, P95, DOI 10.1126/science.282.5386.95
Wong SS, 1998, NATURE, V394, P52
Tans SJ, 1998, NATURE, V393, P49
Suter DM, 1998, CURR OPIN NEUROBIOL, V8, P106, DOI 10.1016/S0959-4388(98)80014-7
Wong EW, 1997, SCIENCE, V277, P1971, DOI 10.1126/science.277.5334.1971
Journet C, 1997, NATURE, V388, P756
Mattson MP, 1997, NEUROREPORT, V8, P2275, DOI 10.1097/00001756-199707070-00036
Rao AM, 1997, SCIENCE, V275, P187, DOI 10.1126/science.275.5297.187
Mark RJ, 1997, J NEUROCHEM, V68, P255
Thess A, 1996, SCIENCE, V273, P483, DOI 10.1126/science.273.5274.483
Carini R, 1996, BIOCHEM BIOPH RES CO, V218, P772, DOI 10.1006/bbrc.1996.0137
Waeg G, 1996, FREE RADICAL RES, V25, P149, DOI 10.3109/10715769609149920
Goodman CS, 1996, ANNU REV NEUROSCI, V19, P341, DOI 10.1146/annurev.neuro.19.1.341
UCHIDA K, 1992, P NATL ACAD SCI USA, V89, P4544, DOI 10.1073/pnas.89.10.4544
LUSTGARTEN JH, 1991, J BIOMECH ENG-T ASME, V113, P184, DOI 10.1115/1.2891232
ESTERBAUER H, 1991, FREE RADICAL BIO MED, V11, P81, DOI 10.1016/0891-5849(91)90192-6
MATTSON MP, 1988, J NEUROSCI RES, V21, P447, DOI 10.1002/jnr.490210236
KATER SB, 1988, TRENDS NEUROSCI, V11, P315, DOI 10.1016/0166-2236(88)90094-X
MATTSON MP, 1988, J NEUROSCI, V8, P2087
MATTSON MP, 1988, BRAIN RES REV, V13, P179, DOI 10.1016/0165-0173(88)90020-3
MATTSON MP, 1987, J NEUROSCI, V7, P4034
2
Akiyoshi, K, Itaya, A., Nomura, S. M., Ono, N., Yoshikawa, K.
2003
33-38
FEBS Lett.
FEBS Lett
Induction of neuron-like tubes and liposome networks by cooperative effect of gangliosides and phospholipids
Although there is a rather large abundance of gangliosides in neurons, their functional role is still unclear. We focused on a physicochemical role of gangliosides in the formation of tubular structures, such as axons or dendrites in neurons. When a ganglioside, GM3, was added to cell-size liposomes that consisted of dioleoylphosphatidyl-choline, tubular structures were induced and liposome networks connected by the tubes were observed by differential interference microscopy and fluorescence microscopy. The potential for various gangliosides to induce tubes was dependent on the structures of their hydrophilic head group. With a large excess of gangliosides, the tubes are destabilized and small fragments, or micelles, are generated. The phenomenon was suggested by physical model calculation. Gangliosides may play a role as building material in neural unique tubular structures. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
ganglioside, neuron, giant liposome, nanotube, network structure, microscopic observation, lipid tubules, containers, nanotubes, membranes, cells
36
29
Shimizu T, 2002, MACROMOL RAPID COMM, V23, P311, DOI 10.1002/1521-3927(20020401)23:5/6<311::AID-MARC311>3.0.CO
Szostak JW, 2001, NATURE, V409, P387, DOI 10.1038/35053176
Karlsson A, 2001, NATURE, V409, P150, DOI 10.1038/35051656
Karlsson M, 2000, ANAL CHEM, V72, P5857, DOI 10.1021/ac0003246
LUISI PL, 2000, PERSPECTIVE SUPRAMOL, V6
Prinetti A, 1999, J BIOL CHEM, V274, P20916, DOI 10.1074/jbc.274.30.20916
Chiu DT, 1999, SCIENCE, V283, P1892, DOI 10.1126/science.283.5409.1892
ZIGMOND MJ, 1999, FUNDAMENTAL NEUROSCI, P519
Bucher P, 1998, LANGMUIR, V14, P2712, DOI 10.1021/la971318g
Simons K, 1997, NATURE, V387, P569, DOI 10.1038/42408
Magome N, 1997, CHEM LETT, P205, DOI 10.1246/cl.1997.205
Evans E, 1996, SCIENCE, V273, P933, DOI 10.1126/science.273.5277.933
Kulkarni VS, 1995, BIOPHYS J, V69, P1976
RAHMANN H, 1995, BEHAV BRAIN RES, V66, P105, DOI 10.1016/0166-4328(94)00131-X
SCHNUR JM, 1994, SCIENCE, V264, P945, DOI 10.1126/science.264.5161.945
SONNINO S, 1994, CHEM PHYS LIPIDS, V71, P21, DOI 10.1016/0009-3084(94)02304-2
SCHNUR JM, 1993, SCIENCE, V262, P1669, DOI 10.1126/science.262.5140.1669
LASIC DD, 1993, LIPOSOMES PHYSICS AP
ARCHIBALD DD, 1992, BIOCHEMISTRY-US, V31, P9045, DOI 10.1021/bi00152a048
KUNITAKE T, 1992, ANGEW CHEM INT EDIT, V31, P709, DOI 10.1002/anie.199207091
Israelachvili JN., 1992, INTERMOLECULAR SURFA
SCHENGRUND CL, 1990, BRAIN RES BULL, V24, P131, DOI 10.1016/0361-9230(90)90297-D
CANNELLA MS, 1988, DEV BRAIN RES, V39, P137, DOI 10.1016/0165-3806(88)90075-2
CURATOLO W, 1986, J BIOL CHEM, V261, P7177
HOTANI H, 1984, J MOL BIOL, V178, P113, DOI 10.1016/0022-2836(84)90234-1
LEDEEN RW, 1984, J NEUROSCI RES, V12, P147, DOI 10.1002/jnr.490120204
TSUJI S, 1983, J BIOCHEM-TOKYO, V94, P303
FORMISANO S, 1979, BIOCHEMISTRY-US, V18, P1119, DOI 10.1021/bi00573a028
HELFRICH W, 1973, Z NATURFORSCH C, VC 28, P693
3
Cans, A S, Wittenberg, N., Karlsson, R., Sombers, L., Karlsson, M., Orwar, O., Ewing, A.
2003
400-404
Proc. Natl. Acad. Sci. U. S. A.
P NATL ACAD SCI USA
Artificial cells: Unique insights into exocytosis using liposomes and lipid nanotubes
Exocytosis is the fundamental process underlying neuronal communication. This process involves fusion of a small neurotransmitter-containing vesicle with the plasma membrane of a cell to release minute amounts of transmitter molecules. Exocytosis is thought to go through an intermediate step involving formation of a small lipid nanotube or fusion pore, followed by expansion of the pore to the final stage of exocytosis. The process of exocytosis has been studied by various methods, however, when living cells are used it is difficult to discriminate between the molecular effects of membrane proteins relative to the mechanics of lipid-membrane-driven processes and to manipulate system parameters (e.g., membrane composition, pH, ion concentration, temperature, etc.). We describe the use of liposome-lipid nanotube networks to create an artificial cell model that undergoes the later stages of exocytosis. This model shows that membrane mechanics, without protein intervention, can drive expansion of the fusion pore to the final stage of exocytosis and can affect the rate of transmitter release through the fusion pore.
adrenal chromaffin cells, pores connecting membranes, fusion pore, different tensions, vesicle fusion, release, events, secretion, dynamics, pheochromocytoma
64
33
Karlsson R, 2002, LANGMUIR, V18, P4186, DOI 10.1021/la025533v
Cho SJ, 2002, CELL BIOL INT, V26, P35, DOI 10.1006/cbir.2001.0849
Bruns Dieter, 2002, Pfluegers Archiv European Journal of Physiology, V443, P333, DOI 10.1007/s00424-001-0742-4
Kahya N, 2001, BIOPHYS J, V81, P1464
Karlsson A, 2001, NATURE, V409, P150, DOI 10.1038/35051656
Karlsson M, 2000, ANAL CHEM, V72, P5857, DOI 10.1021/ac0003246
Chizmadzhev YA, 2000, BIOPHYS J, V78, P2241
Amatore C, 2000, BIOCHIMIE, V82, P481, DOI 10.1016/S0300-9084(00)00213-3
Amatore C, 1999, CHEM-EUR J, V5, P2151, DOI 10.1002/(SICI)1521-3765(19990702)5:7<2151::AID-CHEM2151>3.3.CO
Chizmadzhev YA, 1999, BIOPHYS J, V76, P2951, DOI 10.1016/S0006-3495(99)77450-3
Angleson JK, 1999, NAT NEUROSCI, V2, P440
Woodbury Dixon J., 1999, Cell Biochemistry and Biophysics, V30, P303, DOI 10.1007/BF02738117
Kozminski KD, 1998, ANAL CHEM, V70, P3123, DOI 10.1021/ac980129f
Takei K, 1998, CELL, V94, P131, DOI 10.1016/S0092-8674(00)81228-3
Chanturiya A, 1997, P NATL ACAD SCI USA, V94, P14423, DOI 10.1073/pnas.94.26.14423
Steyer JA, 1997, NATURE, V388, P474
Khanin R, 1997, BIOPHYS J, V72, P507
Evans E, 1996, SCIENCE, V273, P933, DOI 10.1126/science.273.5277.933
Monck JR, 1996, CURR OPIN CELL BIOL, V8, P524, DOI 10.1016/S0955-0674(96)80031-7
Finnegan JM, 1996, J NEUROCHEM, V66, P1914
Calakos N, 1996, PHYSIOL REV, V76, P1
Chizmadzhev YA, 1995, BIOPHYS J, V69, P2489
WIGHTMAN RM, 1995, BIOPHYS J, V68, P383
MONCK JR, 1995, MOL MEMBR BIOL, V12, P151, DOI 10.3109/09687689509038511
DETOLEDO GA, 1993, NATURE, V363, P554, DOI 10.1038/363554a0
CHOW RH, 1992, NATURE, V356, P60, DOI 10.1038/356060a0
WIGHTMAN RM, 1991, P NATL ACAD SCI USA, V88, P10754, DOI 10.1073/pnas.88.23.10754
MONCK JR, 1990, P NATL ACAD SCI USA, V87, P7804, DOI 10.1073/pnas.87.20.7804
HOEKSTRA D, 1990, HEPATOLOGY, V12, pS61
SCHMIDT W, 1983, EUR J CELL BIOL, V32, P31
NEHER E, 1982, P NATL ACAD SCI-BIOL, V79, P6712, DOI 10.1073/pnas.79.21.6712
ZIMMERBERG J, 1980, J GEN PHYSIOL, V75, P241, DOI 10.1085/jgp.75.3.241
CHANDLER DE, 1980, J CELL BIOL, V86, P666, DOI 10.1083/jcb.86.2.666
4
Elam, J S, Taylor, A. B., Strange, R., Antonyuk, S., Doucette, P. A., Rodriguez, J. A., Hasnain, S. S., Hayward, L. J., Valentine, J. S., Yeates, T. O., Hart, P. J.
2003
461-467
Nat. Struct. Biol.
Nat Struct Biol
Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS
Mutations in the SOD1 gene cause the autosomal dominant, neurodegenerative disorder familial amyotrophic lateral sclerosis (FALS). In spinal cord neurons of human FALS patients and in transgenic mice expressing these mutant proteins, aggregates containing FALS SOD1 are observed. Accumulation of SOD1 aggregates is believed to interfere with axonal transport, protein degradation and anti-apoptotic functions of the neuronal cellular machinery. Here we show that metal-deficient, pathogenic SOD1 mutant proteins crystallize in three different crystal forms, all of which reveal higher-order assemblies of aligned beta-sheets. Amyloid-like filaments and water-filled nanotubes arise through extensive interactions between loop and beta-barrel elements of neighboring mutant SOD1 molecules. In all cases, non-native conformational changes permit a gain of interaction between dimers that leads to higher-order arrays. Normal beta-sheet containing proteins avoid such self-association by preventing their edge strands from making intermolecular interactions. Loss of this protection through conformational rearrangement in the metal-deficient enzyme could be a toxic property common to mutants of SOD1 linked to FALS.
amyotrophic-lateral-sclerosis, zinc superoxide-dismutase, molecular-weight complexes, motor-neuron degeneration, electron-density, maps, transgenic mice, cu,zn-superoxide dismutase, neurodegenerative, disease, axonal-transport, nitric-oxide
148
55
Strange RW, 2003, J MOL BIOL, V328, P877, DOI 10.1016/S0022-2836(03)00355-3
Serag AA, 2002, NAT STRUCT BIOL, V9, P734, DOI 10.1038/nsb838
Lashuel HA, 2002, NATURE, V418, P291, DOI 10.1038/418291a
Wang J, 2002, NEUROBIOL DIS, V10, P128, DOI 10.1006/nbdi.2002.0498
Okado-Matsumoto A, 2002, P NATL ACAD SCI USA, V99, P9010, DOI 10.1073/pnas.132260399
Taylor JP, 2002, SCIENCE, V296, P1991, DOI 10.1126/science.1067122
Hayward LJ, 2002, J BIOL CHEM, V277, P15923, DOI 10.1074/jbc.M112087200
Rodriguez JA, 2002, J BIOL CHEM, V277, P15932, DOI 10.1074/jbc.M112088200
Perutz MF, 2002, P NATL ACAD SCI USA, V99, P5591, DOI 10.1073/pnas.042681399
Subramaniam JR, 2002, NAT NEUROSCI, V5, P301, DOI 10.1038/nn823
Richardson JS, 2002, P NATL ACAD SCI USA, V99, P2754, DOI 10.1073/pnas.052706099
Wang J, 2002, NEUROBIOL DIS, V9, P139, DOI 10.1006/nbdi.2001.0471
Watanabe M, 2001, NEUROBIOL DIS, V8, P933, DOI 10.1006/nbdi.2001.0443
Winn MD, 2001, ACTA CRYSTALLOGR D, V57, P122, DOI 10.1107/S0907444900014736
Sherman MY, 2001, NEURON, V29, P15, DOI 10.1016/S0896-6273(01)00177-5
Johnston JA, 2000, P NATL ACAD SCI USA, V97, P12571, DOI 10.1073/pnas.220417997
Liu HB, 2000, BIOCHEMISTRY-US, V39, P8125, DOI 10.1021/bi000846f
Lyons TJ, 2000, J BIOL INORG CHEM, V5, P189, DOI 10.1007/s007750050363
Connors LH, 2000, AMYLOID, V7, P54, DOI 10.3109/13506120009146826
Goto JJ, 2000, J BIOL CHEM, V275, P1007, DOI 10.1074/jbc.275.2.1007
Estevez AG, 1999, SCIENCE, V286, P2498, DOI 10.1126/science.286.5449.2498
Esnouf RM, 1999, ACTA CRYSTALLOGR D, V55, P938, DOI 10.1107/S0907444998017363
Kissinger CR, 1999, ACTA CRYSTALLOGR D, V55, P484, DOI 10.1107/S0907444998012517
Bruening W, 1999, J NEUROCHEM, V72, P693, DOI 10.1046/j.1471-4159.1999.0720693.x
Murshudov GN, 1999, ACTA CRYSTALLOGR D, V55, P247, DOI 10.1107/S090744499801405X
Williamson TL, 1999, NAT NEUROSCI, V2, P50
Bruijn LI, 1998, SCIENCE, V281, P1851, DOI 10.1126/science.281.5384.1851
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/S0907444998003254
Borchelt DR, 1998, NEUROBIOL DIS, V5, P27, DOI 10.1006/nbdi.1998.0178
Hart PJ, 1998, PROTEIN SCI, V7, P545
Vagin A, 1997, J APPL CRYSTALLOGR, V30, P1022, DOI 10.1107/S0021889897006766
Cohen GH, 1997, J APPL CRYSTALLOGR, V30, P1160, DOI 10.1107/S0021889897006729
Crow JP, 1997, J NEUROCHEM, V69, P1936
Bruijn LI, 1997, NEURON, V18, P327, DOI 10.1016/S0896-6273(00)80272-X
Navaza J, 1997, METHOD ENZYMOL, V276, P581, DOI 10.1016/S0076-6879(97)76079-8
OTWINOWSKI Z, 1997, METHOD ENZYMOL, V276, P306
Lyons TJ, 1996, P NATL ACAD SCI USA, V93, P12240, DOI 10.1073/pnas.93.22.12240
Yim MB, 1996, P NATL ACAD SCI USA, V93, P5709, DOI 10.1073/pnas.93.12.5709
Hooft RWW, 1996, NATURE, V381, P272, DOI 10.1038/381272a0
Reaume AG, 1996, NAT GENET, V13, P43, DOI 10.1038/ng0596-43
Shibata N, 1996, J NEUROPATH EXP NEUR, V55, P481, DOI 10.1097/00005072-199604000-00011
WiedauPazos M, 1996, SCIENCE, V271, P515, DOI 10.1126/science.271.5248.515
HAVERKAMP LJ, 1995, BRAIN, V118, P707, DOI 10.1093/brain/118.3.707
WONG PC, 1995, NEURON, V14, P1105, DOI 10.1016/0896-6273(95)90259-7
RIPPS ME, 1995, P NATL ACAD SCI USA, V92, P689, DOI 10.1073/pnas.92.3.689
GURNEY ME, 1994, SCIENCE, V264, P1772, DOI 10.1126/science.8209258
BECKMAN JS, 1994, PROG BRAIN RES, V103, P371
BOWLING AC, 1993, J NEUROCHEM, V61, P2322, DOI 10.1111/j.1471-4159.1993.tb07478.x
DENG HX, 1993, SCIENCE, V261, P1047, DOI 10.1126/science.8351519
LASKOWSKI RA, 1993, J APPL CRYSTALLOGR, V26, P283, DOI 10.1107/S0021889892009944
ROSEN DR, 1993, NATURE, V362, P59, DOI 10.1038/362059a0
KRAULIS PJ, 1991, J APPL CRYSTALLOGR, V24, P946, DOI 10.1107/S0021889891004399
JONES TA, 1991, ACTA CRYSTALLOGR A, V47, P110, DOI 10.1107/S0108767390010224
FRIDOVICH I, 1989, J BIOL CHEM, V264, P7761
READ RJ, 1986, ACTA CRYSTALLOGR A, V42, P140, DOI 10.1107/S0108767386099622